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The scattering of gravity waves by turbulence 

By 0. M. PHILLIPS 
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore 

(Received 17 June 1958) 

A theory is developed to describe the properties of waves on the free surface of 
a liquid in turbulent motion. The distinction between the interacting wave and 
turbulent motions is achieved by separating the velocity field uniquely into a 
surface-induced contribution characteristic of the wave motion and a vorticity- 
induced contribution associated with the turbulence. The theory is applied to 
the scattering of gravity waves passing over the surface of deep water which has 
a turbulent motion of sufficiently low mean square vorticity. Expressions are 
derived for the directional distribution of the scattered wave (equation 4.19) and 
for the logarithmic decrement resulting from the scattering (4.20). It is shown 
that, under typical conditions in open sea, the attenuation from scattering will be 
greater than that from direct viscous dissipation for wavelengths greater than 
about 3 m. 

1. Introduction 
The problem of wave motion on the surface of a turbulent fluid has several 

different aspects. One of these is concerned with the propagation of an incident 
gravity wave through a region of turbulent fluid (water) and with the attenuation 
of the wave that results from the interation between the turbulence and wave 
motion. This aspect may well be of interest in oceanography, since there is little 
doubt that the motion in the upper layers of the open ocean is usually turbulent, 
although the turbulent velocity fluctuations are likely to be much smaller than 
those generally found in the atmosphere. In  studies of propagation of surface 
waves over great distances across the ocean, it is probable that the scattering of 
waves by oceanic turbulence may have a significant effect. For example,? if 
waves originating in one storm have to pass through another storm (where 
presumably the turbulent intensity is high) to reach an observer, one effect of 
scattering is to increase the average path length taken by wave energy in passing 
from source to observer, and so to distribute and delay their arrival. Such a delay 
has been observed by Darbyshire (1952)) and the most natural explanation seems 
to be in terms of this scattering process. 

A second aspect of the interaction between surface waves and turbulence in the 
water is concerned with the generation of waves on the surface of the liquid, and 
with the derivation of relations between the properties of the surface displace- 
ments and the structure of the turbulence that induces them. An associated 

t I am indebted to the referee for pointing out this example. 
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problem concerns the rate at which energy is transferred from the turbulence to 
the waves and is carried away by the wave motion from, say, a localized region of 
turbulence. It might be anticipated from visual observations of the water surface 
below, say, the spillway of a dam, that the transfer of energy from turbulence to 
propagating waves is relatively slow, so that the process would be relatively 
insignificant in most oceanographical contexts, although it may be important in 
other situations. This second aspect of the problem will be discussed in a suc- 
ceeding paper. 

Let us return to consideration of the problem of present interest, namely, the 
attenuation of an incident wave moving across the surface of a deep turbulent 
liquid, where the intensity of the turbulence is sufficiently small that the process 
of wave generation is unimportant. One can see physically that there are two 
possible types of interaction, each of which will result in an attenuation of the 
incident wave. The first can be called an 'eddy viscosity interaction' in which 
energy is transferred from the wave motion to the turbulence. The passage of the 
wave results in straining the elements of fluid near the surface in a manner which 
is almost, but not quite, periodic in time. The mean strain per cycle of the incident 
wave is of second order, namely (a/h)2, where a is the amplitude and A the wave- 
length of the incident wave. The wave motion therefore provides a mechanism for 
stretching the vortex lines that operates in addition to the stretching inherent 
in the turbulence itself, and so tends to increase w", the mean square vorticity 
associated with the turbulence, until a balance is reached with the diffusive 
action of viscosity. Two comments are pertinent to this eddy viscosity type of 
interaction. The first is that the energy of the waves is transferred to turbulence 
having a length scale smaller than the wavelength of the incident wave and so, 
from the point of view of the turbulence, provides a source of energy at  fairly 
large wave numbers (though not as large as those associated with the dissipation 
range), In  the second place, the additional straining process is, for a given 
level of 2 in the water, of second order in a/h and so it might be expected to be 
most important for a given wavelength when the amplitudea of the incident 
wave is large and less important when a is small, as in ocean swell. 

Another process which might be expected to influence the propagation of 
surface waves can be described as a scattering phenomenon. The presence of 
random velocity fluctuations in the water of a length scale comparable with the 
wavelength of the waves will result in the convective distortion of the wave 
fronts, and so in the establishment of a scattered wave field. It is clear that the 
amplitude of the scattered wave system will be proportional to the amplitude of 
the incident wave, as in other scattering problems (see, for example, the dis- 
cussion by Batchelor (1957), which contains a bibliography of significant earlier 
work in these fields) so that the incident wave suffers a true logarithmic decre- 
ment. This scattering effect is clearly of lower order in (alh), and the attenuation 
time will be independent of wave amplitude. Furthermore, since the incident 
wave will be supposed to have a very small slope, only terms of lowest order in 
a/h will be retained in the analysis, so that only the scattering phenomenon 
would be expected to be described. This makes it possible to neglect the effect 
of the waves on the turbulence, so that the turbulent field can be regarded as 
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prescribed by other considerations, such as the existence of mean velocity 
gradients set up by ocean currents. 

One of the fundamental differences between the scattering of gravity waves and 
most other scattering problems that have been considered is that gravity waves 
in deep water are dispersive: the phase velocity is a function of wavelength. This 
suggesbs that from the outset, the analysis might be developed most con- 
veniently in terms of the Fourier components of both the incident wave field 
and the vorticity fluctuations characteristic of the turbulence. This plan is 
adopted in the later sections of this paper. 

2. Specification of the problem 
The first difficulty with which we are faced in discussing the wave motion on the 

surface of a turbulent liquid is that we can define neither a velocity potential nor 
a stream function, since the turbulence is essentially rotational and three- 
dimensional, and consequently we are denied many of the simple and powerful 
methods developed in the past for the theory of water waves. This difficulty is 
overcome to some extent by expressing the Navier-Stokes equations for the 
motion of the water, namely, 

au 
- + u . vu = - V ( p / p  - g z )  + vv2u 
at 

jn the equivalent form 

where w = V x u is the vorticity at the point x and the z co-ordinate axis is taken 
vertically downwards. In  regions where the motion is irrotational, that is w = 0, 
equation (2.2) reduces to the Bernoulli equation, and the combination 

(PIP - gz + 

forms an acceleration potential for the motion. In  the turbulent regions w + 0, 
and the two additional terms of ( 2 . 2 )  describe the effects of viscous damping and 
of the interactions between the waves and the turbulence and the turbulence 
with itself. 

This immediately raises a second difficulty which concerns the separation of 
the motion into components associated with the waves and the turbulence 
respectively, since it is the interaction between these two components that we 
wish to study. As far as the vorticity field is concerned there is little problem, 
since in a fluid of small viscosity it is almost entirely associated with the tur- 
bulence. But for a velocity field that does not vanish at infinity in all directions, 
there is no simple unambiguous separation into rotational and irrotational parts, 
and we are obliged to seek an alternative representation. In  the present problem, 
it is convenient to perform the separation in the following manner. 

w = vxu,  
Since 

12-2 
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and the liquid can be assumed to be incompressible, so that V . u = 0, it follows 
that 

v2u= - v x w .  (2.3) 

The solution of (2.3) for the velocity components u can be expressed as 

dY u(x) = - v x o(y) ___ 4‘, s, 1 P  Ix-Yl 
- I {I  x - y I -l d S  . Vu(y) - u(y) V I x - y I -l. d S } ,  (2.4) 477 n 

where the first integral is taken over the domain occupied by the fluid and the 
second over the surface bounding this domain. Several comments concerning 
this representation are worthy of attention. The first is that it clearly provides 
a unique separation of the velocity field into components associated with a given 
vorticity field and with a given velocity distribution over the boundaries of the 
domain. In  the present problem, this corresponds to contributions to the velocity 
field from the turbulence and from the wave motion of the surface. Secondly, the 
separation is not one into rotational and irrotational parts of the velocity field, 
but into parts u1 and u2 which satisfy the equations V2ul = - V x o and V2u, = 0. 

The distinction may be illustrated clearly in some simple examples. The 
velocity field associated with a localized region of vorticity in an unconfined 
fluid at rest at infinity is given entirely by the first (or vorticity) integral of (2.4) 
even outside the vortical region where the motion is irrotational. Again, if our 
control surface is taken in the interior of a fluid in uniform shearing motion, then 
the flow inside the surface is described wholly by the second (or surface) integral, 
since the vorticity is uniform and V x o = 0. This second example also illustrates 
one restriction on the usefulness of this representation (though not, of course, on 
its validity). If the control surface is chosen arbitrarily in the fluid, then the 
motion over these surfaces will depend in general on the vorticity distribution, 
so that the two parts in this representation are kinematically related, and little 
is achieved by it. However, if the control surfaces are chosen to coincide with 
physical boundaries of the flow, the surface motion can be prescribed and the 
vorticity distribution is related to it only through the dynamical interaction. 
The two contributions to the velocity field represented by the terms on the right 
of (2.4) can conveniently be called the vortex-induced and surface-induced con- 
tributions to the velocity field. 

The simplest scattering problem, analogous to the ‘single scattering ’ of sound 
or radio waves, occurs when a surface wave traverses a region where the mean 
square vorticity fluctuations are sufficiently small that in the interaction term 
u x o of equation (2.2), the velocity u near the surface is determined pre- 
dominantly by the surface-induced contribution from the incident wave. It 
appears later that the influence of the turbulence on the wave motion decreases 
very rapidly with increasing depth, so that we need only be concerned with the 
restrictions imposed by this condition when applied to the motion near the 
surface. The mean square value of the first integral is 
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where the origin is chosen at  x = 0, and if the length scale of the inhomogeneities 
in the vorticity field is much greater than the integral length scales of the vorticity 
covariances, it  can be shown that this expression is of order 

- 
w2 
j ;  I 

where I ,  and L, are differential and integral length scales of the vorticity fluctua- 
tions. The root mean square magnitude of the first integral in (2.4) is then of 
order (w2)& Ltll,,,. Near the surface, the second integral is of order an, where a 
represents the height of the incident waves and n their frequency, which for 
gravity waves of wavelength h is of order (g/h)&.  A necessary condition, there- 
fore, for the validity of a first-order scattering theory is that 

where ut represents the root-mean-square turbulent velocity fluctuations. 

of the turbulence and of the waves, since it can be expressed as 
This restriction relates the Froude number of the turbulence to length scales 

e) a FB < a h ,  
(2 .5 )  

where P = uf/gL,. Since, in a linearized wave theory a/h itself must be small, of 
order 1/10 or less, we require that F*(L,/h)t be even smaller. An alternative 
expression of (2.5), using the condition a/h < 1, is that 

ut 4 = w, (2.6) 

the phase velocity of the incident waves, where the triple inequality sign can be 
interpreted to mean ‘is less by a factor of probably one hundred than’. 

3. The wave propagation equation 
The process of taking the divergence of (2.2) yields 

V2(p/p-gz+gu2) = v . u x o .  (3.1) 

This equation provides the starting-point of the derivation of an inhomogeneous 
wave equation that describes the propagation of surface waves on deep turbulent 
water. There are three main steps in the analysis: 

(a )  Consider (p/p-gz+&u2) = f, say, as our basic dependent variable and 
solve (3.1) formally for f in terms of its normal gradient af/az at the equilibrium 
level z = 0, and of the distribution of V . u x o. 

( b )  Express af/az at z = 0 in terms of the surface acceleration and the vorticity 
distribution by means of the vertical component of the momentum equation (2.1). 
These two steps give the function f throughout the fluid in terms of the surface 
acceleration and the vorticity distribution. 

( c )  The function f at the plane z = 0 is also expressed in terms of the surface 
displacement, using the boundary condition of constant pressure. This leads to 
the required equation between the surface displacement, surface acceleration 
and the vorticity distribution. 
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It will be supposed that the motion in the water is statistically homogeneous 
in planes parallel to the undisturbed surface z = 0,  both on the grounds of 
analytical convenience and in the belief that this will represent a good approxi- 
mation to the oceanographical situation. The motion can then be described by 
stationary random functions of the position variables x and y parallel to this 
plane ( z  being taken vertically downwards) and we can define Fourier-Stieltjes 
transforms d $ ( ~ ,  z, t )  and ~ x ( K ,  z ,  t )  of the functions occurring in equation (3.1) : 

pip - gz + QUZ = / c i ~ ( K ,  z, t )  eix-x, 

s 
(3.2) 

V . u x w  = d ~ ( ~ , z , t ) e i ~ . ~ ,  (3.3) 

where K = ( K ~ ,  K ~ )  represents a two-dimensional horizontal wave-number so that 
K . x = K ~ X  + K~ y, and the integrals are taken over all values of K. The analysis 
below is divided into three sections corresponding to the three main steps that 
have already been described. 

(a )  Formal solution of equation (3.1) 

The relation between the Fourier-Stieltjes transforms d$(K,  z, t )  and dX(K, z ,  t )  

where K~ = K: + K; and the time dependence is implicit. The boundary conditions 
to be imposed on (3.1) are that at the equilibrium level z = 0 is supposed to 
be given (it will be related to the surface acceleration in step ( b ) ) ,  and that both f 
and V . u x o remain finite as z --f 00, since the turbulent energy is presumed to be 
finite at very great depths. The corresponding conditions on the functions dQ 
and d x  in equation (3.4) are 

a 
az - d $ ( K , z , t )  = d @ ( K , t ) ,  say, at  z = 0, 

d + ( ~ , z , t ) ,  dX(K,z , t )  finite, as z + c o .  
(3.5) 

The solution to (3.4) can be expressed as 

where K = 1x1, y is a variable of integration in the vertical direction, and the 
dependance of dx upon K and time t is regarded as implicit. The functions da(K,  t )  
and d p ( K ,  t )  are to be determined from the conditions (3.5). As z -+ co, we find 
from (3.6) that 

so that in order to satisfy the condition of boundedness of d+(z) as z -+ co, it is 
necessary that 

d a ( K ,  t )  = & s,” d X ( K ,  7, t )  e-Kv dy. (3-7) 

Note that if the vorticity flucjxations extend to only a finite depth, then in fact 
d # ( K ,  z ,  t )  + 0 as z --f co; and the fluid is at rest at very great depths. 
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Using the relation (3.7), the solution (3.6) can now be expressed as 

a 
SO that [% d $ ( ~ ,  x ,  t ) ]  = f s,” d ~ ( y )  e-Kv dy - KdB = d @ ( ~ ,  t ) ,  say, 

z=o 

the boundary function in which we desire to express our solution. Thus 

and the solution (3.6) finally becomes 

( b )  Relation between d@ and the surface acceleration 

This next step is achieved by considering the vertical component of the vector 
equation (2.2) at the surface. If the suffix x is taken to denote downwards vertical 
components, then 

a% (3.10) 
a 
-(p/p-qz++u2) = (uxo-vvxo)z--, 
a2 at 

or if C(x, y ,  t )  represents the surface displacement measured upwards, 

- a ( p / p  -gz + i U 2 )  = (u x o - vV x a2 t  
ax a t 2  

(3.11) 

if the surface slope is small. 

introduce the further Fourier-Stieltjes transforms 
To express this equation in terms of its Fourier components, we must now 

(3.12) 

(3.13) 

It is clear that d r  is simply related to the function defined by (3.31, for from the 
first of (3.12), 

I u x o = dr(K, z, t )  e i x S x ,  

(V x = ~ A ( K ,  z, t )  e i X a x ,  

J 
s 

S 
and for the surface displacement 

[(x, y ,  t )  = ~ A ( K ,  t )  eix .=. 

v.uXo = 

so that (3.14) 
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Equation (3.11) can therefore be expressed as a relation between these Fourier-- 
Stieltjes transforms: 

= a@, 
from (3.5), where again the dependence of the various functions on K, t and, where 
relevant, z, is understood. Equation (3.9) therefore becomes 

where the quantities dr, and dA are taken at  z = 0. 
This equation provides a relation (admittedly rather a complicated one) 

between the Fourier-Stieltjes components of the function f = p / p  - gz + &uz and 
those involving the vorticity distribution and the surface accelerations. It is 
subject only to the restriction that the surface gradients are small; no approxima- 
tions have yet been made concerning the relative magnitudes of velocities asso- 
ciated with the waves and the turbulence. It is therefore applicable equally to the 
problem of scattering of gravity waves by turbulence of low intensity and to the 
problem of wave generation when the turbulent intensity is greater. The further 
consideration of this latter problem is postponed to a later paper; from this point 
in the present paper attention will be confined to the scattering problem in which 
the turbulent intensity is sufficiently small that the condition (2.5) is satisfied. 

(c) Derivation of the inhomogeneous wave equation 

The boundary condition at the free surface z = - is that the pressure is con- 
stant and can be taken as zero. Under the condition (2.5), the velocity near the 
surface is predominantly a result of the surface-induced contributions, so that &u2 
is of order a2n2, where a is the height of the incident wave and n is its frequency. 
For gravity waves in deep water, n2 is of order glh, where h is the wavelength, so 
that &u2 is of order ga2/h. To the first order in the wave slope a/h, therefore, 

w p  - gz + Su21z = 0 == [PIP - gz + Su2I2 = -5 

=2 9t.e 

The free surface boundary condition, together with (2.6) requiring a/h to be small, 
therefore leads to the relation 

gd&, t )  = [ W K ,  2, t)l,=o (3.16) 

between the Fourier-Stieltjes transforms defined by (3.2) and (3.13). This, 
together with (3 .1~9,  provides an equation for the propagation of the components 
dA (K, t )  of the surface displacement 
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The relation (3.14) can be used to express d ~ ( y )  in terms of dI ' ( r ) ,  and on sub- 
stitution into (3.17) and integration by parts, we find that 

(g + (:) K ~ )  d A  (K, t )  = ( K  d r ,  + i K  . dI') e-Kv dy - 1.' d h ( ~ ,  t ) ,  (3.18) s," 
where, yet again, the variation of dI' with K ,  y and time t is to be understood and 
d A  is taken at z = 0. 

The left-hand side of this equation is recognizable as the Fourier transform of 
a wave equation in which the phase velocity of the waves is (g/K)*.  The right-hand 
side represents the influence of the inhomogeneities introduced by the turbulence, 
together with the viscous damping term. It will be noticed that, in view of the 
exponential factor' in the integral, the vorticity fluctuations at depths greater 
than about a wavelength have little influence upon the propagation of surface 
waves, verifying the statement made in anticipation in $2. The viscous dissipa- 
tion term is probably negligible for all but very short waves. In  the absence of 
turbulent scattering, an expression given by Lamb (1932, p. 624) indicates that 
a water wave of wavelength 20 m travels a distance of 8400 km before its ampli- 
tude is reduced by a factor e-l. It is therefore likely (an a posteriori justification 
can be made from the results of the next section) that unless the mean square 
turbulent vorticity fluctuations in the ocean are exceedingly minute, the effect of 
viscous dissipation in waves of moderate wavelength will be small compared to 
the effects of turbulent scattering, and the term v d A  in (3.18) can be neglected. 

4. The scattered wave system 
Suppose that, at  an initial instant, a wave of amplitude a and wavelength 

27r/k is travelling along the surface of the water in the direction of the positive 
x-axis. If the fluctuations in vorticity in the water are sufficiently small, the 
motion is, to a first approximation, that of an irrotational surface wave in which 
the surface displacement is 

cLe --i(kX-?ZL) 

and the surface-induced components of the velocity field are 

u1 = an e-i(kx-nl) e-kz 

u2 = 0, 
= - ian e-i(kx-nt) e-ka 

where the suffices 1 , 2  and 3 indicate velocity components in the x, y and z direc- 
tions respectively, and the wave frequency n = (gE)*. 

The next approximation, which describes the scattered wave field is obtained 
by substituting from (4.1) into the interaction term of the inhomogeneous 
equation (3.18). To do this, we make use of the theorem which states that iff (K) 
is the Fourier transform of F ( x ) ,  then the Fourier transform of P(x)  e-ikx is 

F ( x )  ei(K1-k) x+iKav d x  

(4.2) 

s F( x )  e--ikx eix. X d x  = 

= f (K),  
s 
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where the new wave-number vector K = ( K ~  - k, K ~ ) .  Now d r ,  is the Fourier- 
Stieltjes transform of (u2w3 - u3w2)  or of - u3w2 approximately, since from (4.1), 
to the first approximation, the surface-induced contribution to  u2 from the 
incident wave vanishes. Therefore, if the vorticity fluctuations are represented by 

o(x, t )  = ~SZL(K, z, t )  eix.=, (4.3) S 
where K = ( K ~ ,  K ~ ) ,  we have from (4.1) and (4.2) that 

d r ,  = ian ei’lt e-kz d Q 2 ( K )  . 
dr, = - ian einte-kz”(QZ,(K) + i dQ3(K) ) ,  

dr, = - ian einfe-kzdQ2,(K), 

Similarly, 

so that from equation (3.18), 

( $ + g ~ )  ~ A ( K ,  t )  = an eintd@(K,  K, t ) ,  (4.4) 

say, where 

the dependence of dQ2,(K) upon y and time t being understood. 
Equation (4.4) specifies the rate of growth of the wavelets of wave-number K 

set up by the passage of the wave of wave-number k through the turbulent fluid, 
where the subsequent scattering of these wavelets themselves is neglected. This 
process is analogous to that of ‘single scattering’ of sound or radio waves in a 
medium in which the wave velocity varies irregularly from one point to another. 
In  the case of gravity waves on the surface of a liquid, however, the phase and 
group velocities are determined not by the local surface conditions but by the 
motion throughout a whole layer of fluid near the surface, and this fact is reflected 
by the integral expression as given by (4.5) that appears on the right-hand 
side of the scattering equation (4.4). 

We will suppose that at the initial instant t = 0 the amplitude of the scattered 
wave system is zero, and we will investigate the growth of the scattered com- 
ponents during subsequent times. The initial conditions relevant to (4.4) are 
then that a 

at 
~ A ( K ,  t )  = - ~ A ( K ,  t )  = 0 at t = 0, 

so that the solution can be expressed as 

where n = (gk)& and n’ = (gh-)*. The variation with time of d@(t) is determined by 
the variation of the vorticity fluctuations with time, and in many problems of 
interest, particularly in oceanographical contexts, this is very much slower than 
the time variations characteristic of the waves. It is possible to neglect the 
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temporal variation of the vorticity if the time taken for the wave to propagate 
through a distance equal to the length scale L, of the vorticity fluctuations is 
small compared with the time scale of these fluctuations, that is, if 

T 

where h is the wavelength. This condition can be restated in terms of the Froude 
number of the turbulence as follows: 

where F is the Froude number and I ,  the differential length scale defined at the 
end of $2. In  general the integral scale L, would be expected to be rather larger 
than the differential scale I ,  so that this condition is much less restrictive than 
( 2 . 5 )  and should hold automatically when (2.5) is satisfied. 

The amplitude a of the incident wave also is contained within the time integral 
of (4.6). Its variation with time occurs as a result of the loss of energy to the 
scattered components, but since the vorticity level in the water has already been 
presumed small, it can be anticipated that this variation is also likely to be slow. 
For times less than the time scale y-l  of the attenuation of the incident wave due 
to scattering, therefore, equation (4.6) simplifies to 

eint - ein’t eint - e-in’t - an 
2n’ n-n’ 

-- - - - - ~ $ ( K , K ) (  (4.7) 

where a and d$ represent the appropriate quantities at  the initial instant t = 0. 
This equation can be expressed as 

- an ,iu - eiu’ eiu - e-iu‘ 
d A ( ~ , t )  = - d @ ( K , K ) t  

2n‘ 

where CT = nt = (gk))t  and CT’ = n’t = (gK)*t. The spectrum of the scattered 
waves is d A ( q  t )  ~ A * ( K ,  t )  

a2n2 
4n’2 

@(K,t) = 
dK1 dKZ 

= - Y ( K ,  k )  t2r(K,  k, t ) ,  (4 .8)  

where Y ( K ,  k) = Y ( K ,  K )  is the spectral function corresponding to the Fourier- 
Stieltjes components d$(K, K )  = d$(K, k ) :  

d $ ( K ,  k) d$*(K,) Y ( K , k )  = - 
dK1 d K 2  

> 

and the function I? is given by 
(4.9) 

(1 + cos2CT‘ { 1 - cos (a - a’)} - ~ 

- cos (a + a’) - cos (a- a’)} + ___ 
(a+a‘)2 

2 2 - -- 
(a - a’)2  a 2  - g ’ Z  

(1-cos(a+a’)}. (4.10) 
2 



The wave-number k is specified by the incident wave field, and when I? is 
regarded as a function of d, it  is evident by inspection that I? has a maximum 
when CT = c‘ or k = K, when the (scalar) wave-numbers of the incident and 
scattered waves are equal. Near this maximum, if = d +s, 

2( 1 - cos E )  

€2 ’ r ( K ,  k, t )  = (4.11) 

neglecting terms of order 4s. If we consider only the wave components scattered 
in a given direction 8, the direction of the vector K, it follows from (4.8) that the 
spectral density is greatest near K = k, and from (4.10) that the ‘band width’ 6~ 
of the spectrum of the scattered components is given by 

6 = [g (k  + SK)]& t - [ g k p  t = n, 

or (4.12) 

FIGURE 1. The scattering vector. 

If the elapsed time t is much greater than the periodic time of the incident waves, 
this ‘band width’ of the scattered waves is narrow, and decreases in inverse pro- 
portion to t ,  so that the spectrum of the scattered waves at a given scattering 
angle 0 becomes more and more concentrated about the wave-number K = k, the 
wave-number of the incident waves. 

It follows from equation (4.8) in the light of these considerations that the 
scattered waves of wave-number K = ( K ~ ,  K ~ )  in the direction 8 with respect to the 
direction of the incident waves result from the components of the vorticity field 
of wave-number K = (K] - k, K ~ ) ,  where k = K = (K: + K:)&. The same vector K is 
important in other scattering problems, where it is usually called the ‘scattering 
vector ’, and the same name can conveniently be used in the present context. It is 
clear from figure 1 that, since K = k, the vector K is perpendicular to the line 
bisecting the directions of the incident and scattered waves, and is of magnitude 

I< = 2 ~ s i n 3 8  = 2ksin48. (4.13) 

The appearance of the scattering vector might be expected on geometrical 
grounds (as shown, for example, by Batchelor 1957) by considering two 
scattering points P and P‘, as shown in figure 2 ,  separated by a distance k = 2nlK. 
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For reinforcement of the scattered waves, the path APB must equal one wave- 
length of the incident wave, or 2n/k. Thus (n/k) / (2n/K) = sin48, leading im- 
mediately to (4.13). 

The mean square amplitude of the waves scattered per unit angle in the 
direction 8 is found from (4.8) by integration over wave-numbers K in this 
direction. When the elapsed time t is much greater than the period of the incident 
waves, the approximation (4.11) can be used, and 

K dK, a2 
cD(8,t) c - Y ( K ) t 2  

4 
(4.14) 

since over the small range of values of K corresponding to - 
and the variation of the vector K and so of the function Y ( K )  is small. Now, 

< e < &T, n' + n 

d€ = ig&K-*tdK &*k-hdK 

FIGURE 2. A geometrical interpretation of the scattering vector. 

near K = k, so that (4.14) can be expressed as 

(4.15) 

The directional distribution of the scattered waves is described conveniently 
by the ratio of the mean energy flux developed in the scattered waves per unit 
length of wave front per unit angle in the direction 8 per unit time to the energy 
flux in the incident wave per unit length of wave front. This ratio is given by 

nk2 
(gk i l  

= - Y ( K ) .  (4.16) 
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which has dimensions (time)-1. The fraction of the energy of the incident wave 
lost by scattering per unit time, or the logarithmic decrement of attenuation due 
to scattering is 

y ( k )  = /-n ~ ( 8 ,  k) do, 
--n 

(4.17) 

where the scattering vector K has magnitude 2k sin $0 and direction +(a + 8). 
If further progress beyond expressions such as (4.16) and (4.17) is to be made, 

some information is necessary concerning the form of the function Y(K). It can 
be seen readily from (4.5) and (4.9) that Y(K) has the same dimensions as the two- 
dimensional vorticity spectrum of the turbulence, and since the Reynolds 
number of the turbulence encountered in the ocean is extremely large, it  is to be 
expected that Yf (K) is directly proportional to this vorticity spectrum. The length 
scales associated with the vorticity spectrum in oceanic turbulence cover a very 
wide range, perhaps from several hundred metres down to a microscale, or scale 
of the smallest eddies, of order 1 cm, which certainly includes the wavelengths of 
incident waves in which we are likely to be most interested. This fact precludes 
the use of the limiting approximations found useful in considering the scattering 
of acoustical or radio waves (see Batchelor 1957) which suppose that the length 
scale of the scatterers is either much greater or much less than the wavelength of 
the incident waves. 

The observation that Y (K) is proportional to the two-dimensional vorticity 
spectrum suggests that use might be made of the predictions of the local similarity 
theory, but this cannot be done without some caution. We are interested in the 
form of the vorticity spectrum near the free surface, measured in a plane parallel 
to the surface. It is well knownexperimentally, and indeed it is only to be expected 
on a priori grounds that near a rigid surface with large mean velocity gradients, 
the theory of local similarity is inapplicable in a description of the flow. However, 
a free surface imposes fewer constraints on the motion in the immediate neigh- 
bourhood; the mean shear now vanishes and the fluid is free to move parallel to 
the surface. The conditions are much closer to those which the local similarity 
theory seeks to describe, and the function Y(K) to which it might be applied 
seems to be almost the most appropriate that could be found, since it represents 
an integral throughout a layer near the surface and should not therefore be 
crucially dependent upon the conditions immediately at the interface. 

With these reservations in mind, then, we will make use of this theory to deter- 
mine the functional form of \Y(K). Except when 0 is very small (cf. 4.13), the 
values of K corresponding to waves of moderate length fall in the ‘inertial sub- 
range’ of the spectrum of the turbulence, so that Y(K) should be determined by 
K and c, the rate of energy dissipation in the turbulence, and not by any of the 
other parameters describing the turbulence. On dimensional grounds, therefore, 

Y(K) = B&K-3, (4.18) 

where B is an absolute constant. The directional distribution s ( 0 , k )  of the 
scattered waves is found by substitution of (4.18) and (4.13) into (4.17): 

s(0, k) = 2-8Bng-h&f(sin +S)-%. (4.19) 
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Near 8 = 0, in the forward direction, this expression becomes invalid, since the 
wave-numqers K .I. k8 then correspond to length scales in the scattering vorticity 
field of the same order as the horizontal scale L of the energy-containing com- 
ponents of the turbulence. Indeed, when 8 = 0, it can be shown that s(8, k) = 0, 
and there is no energy scattered in the direction of the incident wave. This 
follows from some expressions that we have already derived, for when 8 = 0, 
K = 0 and (4.9) and (4.5) can be used to show that Y(0) = 0, which, in virtue of 
(4.16) implies that s(8, I c )  = 0 when 8 = 0. The directional distribution function 
of the scattered waves is thus of the form shown in figure 3, where the dotted line 
indicates the continuation of (4.19) near 8 = 0. The maximum value of s(8,k) 
occurs at a value of 0 of approximately AIL, where h is the wavelength of the 
incident waves. 

F I G ~ E  3. The directional distribution of scattered waves in the ocean. 

An approximate expression for the logarithmic decrement y(k), valid when 
AIL is sufficiently small, is obtained by integration of (4.19) from 8 = 0 to 2rr and 
neglecting the decrease of s(8, k) to zero when 8 = 0. This yields 

y ( k )  ri. 2-)B;rrg-*~8@. 2 

+ 29Bg-@k8. (4.20) 

It is interesting to compare this result with that derived by Stokes (and dis- 
cussed by Lamb 1932, $9 348, 349) for the logarithmic decrement resulting from 
viscous dissipation, namely ye(/%) = 2vP. 

The attenuation resulting from scattering will predominate if 

i.e. (4.21) 
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The rate of turbulent energy dissipation in the open ocean may be estimated from 
some fairly rough diffusion measurements described by Stommel (1949) and a 
typical value for B in the open ocean appears to be of order 10-5 cm s ~ c - ~ .  The 
gravitational acceleration g is approximately 10% cm sec-2 and the kinematic 
viscosity v for water is approximately 1.5 x cm2 sec-l. With these values, 
and if B is of order unity, it  follows from (4.21) that attenuation resulting from 
scattering predominates for wave-numbers less than about 2 x cm-l; or for 
wavelengths greater than about 3 m. In tidal waters where the turbulence may 
be more intense than it is in the open ocean, the attenuation resulting from 
scattering may be important for even shorter wavelengths. 

It is doubtful whether oceanographical wave measurements are yet sufficiently 
precise to make meaningful observations on the attenuation of surface waves. 
The results of this paper, however, suggest that when this is done, the cause of 
the attenuation of the longer components of the wave field may lie not in the 
dissipative action of viscosity but in the scattering action of the oceanic 
turbulence. 
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